komento näyttää ”Valintaeditori” dialogi-ikkunan. Tämä dialogi-ikkuna näyttää aktiivisen valinnan nykyisestä kuvasta ja antaa sinulle helpon pääsyn valintaan liittyviin komentoihin. Sitä ei ole oikeasti tarkoitettu valintojen suoraan editointiin, mutta jos työstät valintaa, on kätevää pitää kaikki valintakomennot yhdessä, sillä on helpompaa klikata nappia kuin etsiä komentoja komentopuusta menupalkin kautta. ”Valintaeditori” tarjoaa myös edistyneitä asetuksia ”Valitse polulle” komennolle.
”Valintaeditori” dialogi-ikkunalla on useita nappeja, joilla voit helposti käyttää valintakomentoja.
The Select All
button.
The Select None
button.
The Select Invert
button.
The Save to
Channel button.
The To Path
button. If you hold the Shift key while
clicking on this button, the
Advanced
Settings dialog is displayed. Please see the next section
for details about these options.
The Stroke
Selection button.
Näyteikkunassa valitut alueet ovat valkoisia, ei valitut ovat mustia ja osittain valitut ovat harmaansävyisiä. Tämän ikkunan klikkaaminen toimii kuin Valitse värin perusteella. Katso esimerkki alhaalta.
Kuva 16.20. Esimerkki ”Valintaeditorin” painamisesta
Selection Editor window after clicking.
Image with the resulting selection applied.
”Valinta polulle edistyneet asetukset” dialogi, jonka saat Shift klikkaamalla nappia, sisältää tietyn määrän asetuksia. Suurimman osan niistä voit asettaa liukusäätimellä tai tekstilaatikolla. On myös yksi valintalaatikko. Nämä asetukset ovat vain edistyneille käyttäjille. Ne ovat:
If two endpoints are closer than this value, they are made to be equal.
If the angle defined by a point and its predecessors and successors is smaller than this, it is a corner, even if it is within Corner Surround pixels of a point with a smaller angle.
Number of points to consider when determining if a point is a corner or not.
If a point, its predecessors, and its successors define an angle smaller than this, it is a corner.
Amount of error at which a fitted spline[6] is unacceptable. If any pixel is further away than this from the fitted curve, the algorithm tries again.
A second number of adjacent points to consider when filtering.
If the angles between the vectors produced by Filter Surround and Filter Alternative Surround points differ by more than this, use the one from Filter Alternative Surround.
The number of times to smooth the original data points. Increasing this number dramatically, to 50 or so, can produce vastly better results. But if any points that ”should” be corners aren't found, the curve goes wild around that point.
To produce the new point, use the old point plus this times the neighbors.
Number of adjacent points to consider if Filter Surround points defines a straight line.
Number of adjacent points to consider when filtering.
This check box says whether or not to remove ”knee” points after finding the outline.
If a spline is closer to a straight line than this value, it remains a straight line, even if it would otherwise be changed back to a curve. This is weighted by the square of the curve length, to make shorter curves more likely to be reverted.
How many pixels (on the average) a spline can diverge from the line determined by its endpoints before it is changed to a straight line.
If reparameterization doesn't improve the fit by this much percent, the algorithm stops doing it.
Amount of error at which it is pointless to reparameterize. This happens, for example, when the algorithm is trying to fit the outline of the outside of an ”O” with a single spline. The initial fit is not good enough for the Newton-Raphson iteration to improve it. It may be that it would be better to detect the cases where the algorithm didn't find any corners.
Percentage of the curve away from the worst point to look for a better place to subdivide.
Number of points to consider when deciding whether a given point is a better place to subdivide.
How many pixels a point can diverge from a straight line and still be considered a better place to subdivide.
Number of points to look at on either side of a point when computing the approximation to the tangent at that point.